

ETO Switch Development for Power Conditioning

Principal Investigator: Prof Alex Q. Huang

Semiconductor Power Electronics Center (SPEC)
North Carolina State University, Raleigh

SNL Project Manager: Stan Atcitty

DOE Energy Storage Program Peer Review 2004

SPEC Research Areas

- Power Semiconductor Devices (PSD)
- Power Management Microsystems (PMM)
- Utility Power Electronics (UPE)
- Electric Power Systems (EPS)
- Three faculty members
- 20+ graduate students
- 8000 sq. ft of lab space

Key Technologies under Development at SPEC

Presentation Outline

- •FY2004 Activities and Accomplishments
- Applications and Insertions of ETOs
- Future Works

Gen-3 ETO: the Advanced High Power Switch for Voltage Source Converter

- Easy for series and parallel operation
- ➤ Application scope: Distributed Energy Resources, FACTS, Energy Storage, Traction, Motor drive, Power system protection

Continuous Open-loop Test of ETO Based HBBBs

Test conditions: Line frequency: 25 Hz, Switching frequency: 1 kHz, M=0.9 DC Bus voltage: 2 kV, Output RMS current 1.0kA

Gen-4 ETO: the Next-Gen High Power Switch with Fully Optical Control

- High power density, high performance
- Simple Construction

- Low cost
- High reliability

The Experimental Demonstration of the Self-Power generation function of the Gen-4 ETO

- ETO obtains 10.1J in this switching cycle
- The energy can provide the ETO's gate drive for about 1s switching at 1000Hz

Comparison of Gen-4 ETO and IGCT

Gen-4 ETO converter

- Gen-4 ETO will greatly simplify the converter structure
- User interface is like a Light Triggered Thyristor (LTT)
- The reliability is increased and the cost is reduced
- Extremely important for series operation

Gen-5 ETO (ETO Module)

- 5 kHz operation
- Planar GTO as main switch
- Packaged on isolated substrate
- Current rating scalable

The Electrical Characteristics of the Gen-5 ETO

Snubberless turn-off waveforms

Demonstration of forward-bias SOA

- Low conduction loss
- Snubberless turn-off capability
- Turn-on di/dt controlable

11/11/04

Energy Storage System Demonstration Program: 4.5 MVA ETO/TUCAP-STATCOM

Low-power Experiment Results of STATCOM/TUCAP

STATCOM/TUCAP independent reactive and active power control

Arc Furnace Flicker Testbed

Experiment Vs Simulation

Simulation:

Xs/Rs=3.7, Qstatcom/Sload=30%, 5Hz 3.2% flicker

Future Plan: Demonstrate the Gen-4 and Gen-5 ETO in the TUCAP STATCOM

ETO STATCOM/TUCAP Project Goal

- ▶13. 8 kV transformerless STATCOM/TUCAP
- ➤ Housed in one mobile trailer
- ➤ Placed close to customer
- ➤ Nominal 30 MVA, 60 MVA 2 second surge.
- ➤\$60/ kVAr cost target

Future Plan: 30MVA Transformerless STATCOM/TUCAP

- Cascaded multilevel voltage source converter using modular ETO HBBB
- System requirement: THD_i < 2%, V_{AC line} = 13.8 kV

- New generations of ETO devices will significantly simplify the energy storage systems
 - Future development planned
- A 4.5 MVA ETO STATCOM/TUCAP system is being tested at SPEC Laboratory
- An Arc furnace flicker controller is being developed
- 30 MVA STATCOM/TUCAPO controller system is planned for future developed